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1. INTRODUCTION 

The “gold standard” approach in the literature for the evaluation of a treatment on an 

outcome has been to conduct a randomized clinical trial (RCT) in which patients are randomly 

assigned to treatment and control groups.  The basic framework for assessing the causal impact of a 

treatment involves the construction of the potential outcome (Rubin (1974, 1978), Heckman and 

Robb (1985)) associated with each level of the treatment.  Treatment effects are then given by 

differences in potential outcomes for various treatment levels.  Because outcomes are only observed 

for one level of the treatment at a particular time, the investigator is faced with the task of 

constructing what the outcome might have been had the subject received another level of the 

treatment.  In a clinical trial, treatment effects are calculated by comparing the outcomes of the 

treated with those of the controls.  Randomization addresses the possibility that bias may be 

introduced into the estimation if individuals were able to choose treatment status on their own.  

Typically, the treatment effect is then given by the regression coefficient on the treatment variable in 

an Ordinary Least Squares (OLS) regression of the outcome of interest on the binary treatment 

indicator as well as other covariates.  

The standard approach for evaluating treatment effectiveness in a clinical trial may lead to 

biased results in longitudinal trial settings due to attrition, which, in many cases, changes a 

randomized clinical trial into an observational study if such dropouts are non-random across the 

treatment arms of the trial.  While the biased induced by dropouts has been increasingly recognized 

as problem in evaluating clinical trials, it has generally been viewed as a statistical issue that should 

be controlled for in one fashion or another (Scharfstein et al. (1999)).  However, recent work by 

Philipson and Desimone (1997) and Philipson and Hedges (1998) argues that dropout behavior 

provides information that is useful in the evaluation of the treatment.  In particular, the decision to 
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leave the RCT depends not only on the impact of the trial drugs on the “publicly observed” measures 

of health status, such as the CD4 count, that is the typical focus of treatment efficacy evaluation, but 

also upon “private” information observed by the patient, such as the pain or discomfort the he may 

feel when taking the treatment medication.  We label these latter conditions as side effects since they 

typically reflect short-term discomfort associated with consumption of the drug.  Philipson and 

Desimone (1997) argue that participants engage in “subject sampling” in which they attempt to learn 

about the direct and side effects of the treatment, since they have a strong incentive to do so.  

Consequently, dropout behavior provides insight not only into the direct effectiveness of the 

treatment, but also potential side effects that may not be easily measured or are privately observed 

by the subject, as well as treatment options that lay outside the clinical trial. 

This paper constructs structural models of RCT subject behavior in which trial participants 

decide whether to drop out by comparing the utility generated by remaining in the trial, which is a 

function of both direct and side effects of the treatment received, with the returns obtained by 

seeking care outside the trial.  We estimate two alternative models, related to specifications found in 

the literature on demand for pharmaceuticals, that impose different assumptions on the behavior of 

subjects and on how information is revealed in the RCT:  (1) the learning model takes the approach 

of Ching (2000) and Currie and Park (2000) and assumes that subjects maximize current period 

utility, but are initially uncertain of the effectiveness of the treatment over time and infer this over 

time via Bayesian updating (although the side-effects of the treatments are observed immediately by 

the subject); (2) in the forward-looking learning model, subjects learn about treatment effectiveness 

over time, but decide whether to remain in the trial for one more period by comparing the expected 

present value of associated with remaining in the trial with that obtained by leaving and receiving 

the outside option.  A similar model is used by Crawford and Shum (2000) to analyze the demand 

for anti-ulcer medications in a non-RCT setting.    
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We use our framework to analyze data from the AIDS randomized clinical trial ACTG 175 

(see Hammer et. al. (1996)).  ACTG 175 was a randomized double blind clinical trial to evaluate the 

effectiveness of combination therapy versus monotherapy for HIV infected individuals with CD4 

cell counts of between 200 and 500/mm3.  CD4 counts are a widely used marker for the status of an 

individual’s immune system, and hence the progression of AIDS in the patient.  CD4 counts were 

measured at trial baseline and then at weeks 8, 20, 32…104 of the trial.  The potential outcomes for 

this paper are the subjects’ CD4 count at each trial week under AZT+ddC and each week’s CD4 

count under AZT.  A notable feature of ACTG 175 was that roughly half of the subjects dropped out 

by the second year of the trial.  While the substantial attrition was noted in the initial evaluation of 

the trial (Hammer et. al. (1996)), only Scharfstein et al (1999)) has attempted to account for dropout 

in the estimation of the treatment effect in the trial.  However, Scharfstein et al analyze a cross-

section of data from the trial and do not consider the evolution of attrition over the course of the 

trial. 

The first objective of our paper is to assess the impact of the combination therapy zidovudine 

plus zalcitabine (AZT+ddC) relative to zidovudine (AZT) on CD4 counts, accounting for attrition.   

Recent studies by Chickering and Pearl (1997) and Heckerman and Shachter (1995) emphasize the 

importance of accounting for heterogeneity when constructing treatment effects in health care 

studies.  We therefore allow the impact of trial treatments on CD4 counts to vary across trial 

subjects.  The second objective of the paper is to examine the extent to which treatments differ in 

their side effects.  Randomization at baseline provides information through which this latter set of 

treatment effects is identified.  If attrition is greater in one trial arm than another, conditional on 

effectiveness, then the side effects of the particular treatment are likely to be greater, since 

unobserved patient characteristics are balanced at baseline.         

While we have not completed the estimation of the forward-looking learning model, our 
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initial findings show that combination therapy increases CD4 counts by about 8.7 percentage points 

relative to monotherapy after 8 weeks in the trial.  This effect increases to 31.9 percentage points by 

week 104.  However, the positive treatment effect of AZT+ddC is offset by the fact that it appears to 

have significantly greater side effects than AZT alone.  The combination of these two opposing 

effects helps to explain why dropout is initially higher for combination therapy patients, although by 

the end of the trial attrition is greater for subjects receiving monotherapy.  As one might expect, the 

learning model estimates suggest that trial participants have optimistic prior beliefs concerning trial 

treatment effects.  This somewhat offsets the impact of the lower observed CD4 counts of AZT 

patients on attrition early on in ACTG 175.    

The remainder of the paper first presents initial summary evidence on the importance of 

accounting for attrition when estimating the impact of treatments on the evolution of CD4 counts.  

Section 3 then describes the structural models of dropout behaviour, while Section 4 describes the 

econometric implementation of the economic models.  The parameter estimates are presented and 

treatment effects constructed in Section 5.  A short conclusion summarizes the findings and suggests 

avenues for future research.  

2.   THE ACTG 175 DATA 

 The data for this paper comes from Aids Clinical Trial Group Study 175 (ACTG 175) 

that compares the impact of monotherapy to combination therapy for 2467 HIV-infected adults 

with screening CD4 cell counts from 200 to 500 per cubic millimeter.  Subjects were recruited 

from 43 AIDS Clinical Trials Units and 9 National Hemophilia Foundation sites in the United 

States and Puerto Rico.  A total of 98 trial sites were used in the trial.  Individuals were 

randomly assigned to one of four daily treatment regimens: 400 mg of didanosine (ddI); 600 mg 

of zidovudine (AZT); 600 mg of zidovudine plus 400 mg of didanosine (AZT+ddI); or 600 mg 

of zidovudine plus 2.25 mg of zalcitabine (AZT+ddC).  During 1991 and 1992, when the trial 
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was initiated, AZT was the standard treatment for HIV.  For each subject, treatment response 

was measured by the longitudinal progression of CD4 counts recorded at different intervals.  

Subject CD4 counts were recorded baseline (week 0), week 8, and then every twelve weeks 

thereafter for a period of 104 weeks or more.  Full details of the trial may be found in Hammer et 

al. (1996).   

For simplicity, this analysis focuses on the treatment effect for two arms of the trial, AZT 

and AZT+ddC.  The analysis sample consists of 1072 subjects treated at 89 different trial sites, 

536 receiving AZT, 536 receiving AZT+ddC.  We examine the effect of these treatments on 

CD4 counts for the first two years after baseline, so that a subject potentially has 10 measures of 

CD4 counts, recorded at weeks w = 0,8,20...104.  The two-year window was chosen because the 

clinical endpoint of the trial for all subjects occurred at least two years after baseline. 

Following Boscardin et al. (1998), the outcome measure used in this study is the change 

in the ln(CD4) count between week w and baseline week 0.  This specification allows us to 

determine whether the rise in CD4 counts often observed 8 weeks after baseline continues to 

persist into subsequent weeks.  Figure 1 plots the relationship between the average change in log 

CD4 counts and weeks in the trial for subjects in each of the two treatment arms.  The CD4 

profiles shown in the figure indicate that the average CD4 count of individuals receiving 

AZT+ddC actually increases in week 8 relative to baseline.  While mean CD4 counts decline 

over the remainder of the two-year period, the average remains near the baseline for this group.  

In contrast, subjects receiving AZT alone experience a 5% fall in CD4 counts by week 8.  By 

week 104, CD4 counts are roughly 15% below baseline.   

Table 1 presents estimates from a regression of the change in ln(CD4) counts relative to 

baseline on indicator variables for the week of the trial and interactions between trial week and 

receipt of AZT+ddC.  Specification (1) shows that the differences in CD4 profiles across 
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treatment arms shown in Figure 1 are statistically significant.  For example, the change in CD4 

count is 10% higher for those receiving AZT+ddC in week 8, relative to those taking AZT.  By 

week 104 of the trial, this difference increases to approximately 19%.  Specification (2) presents 

estimates for a specification that also includes controls for age, gender, whether the subject is 

white, the subject’s screening CD4 count, whether the subject received ZDV prior to the start of 

the clinical trial, and whether the subject is HIV symptomatic.  As might be expected from the 

random assignment of trial participants, the estimated treatment effect does not change when 

these controls are included in the model.      

2.1 INITIAL EVIDENCE CONCERNING THE IMPACT OF ATTRITION 

 For the purpose of our analysis, attrition occurs when a subject ends the treatment 

assigned at baseline prematurely (i.e., before reaching week 104).  Figure 2 plots the survivor 

function over the two-year period for the AZT+ddC and AZT sub-samples.  Attrition appears to 

be a potentially important confounder in assessing the progression of CD4 counts in ACTG 175, 

since only about 45%-50% of subjects continue in the trial through week 104.  Moreover, the 

figure shows “cross-over” behavior in attrition:  although subjects were randomly assigned to 

treatment, AZT+ddC subjects are initially more likely to leave ACTG 175, but over time the 

attrition rate for AZT patients overtakes that for those receiving combination therapy.   

The reason a subject drops out of the trial is reported in the ACTG 175 data.  While the 

reported reasons are hardly definitive, and may mask multiple causes, some insight on the 

potential role of side effects in inducing attrition may be gained by examining the reason for 

dropout data in Table 2.  The first row of the table shows that, conditional upon leaving the study 

for any reason, the death of a subject while participating in the trial is relatively uncommon.  

Moreover, few patients are explicitly removed from the trial by the ACTG 175 investigators.  

Consequently, dropout appears to be in large part a subject decision.  Comparison of columns (1) 
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and (4) show that patients receiving combination therapy are more likely to request to leave the 

trial at some point due to toxic reactions to the treatment than are those receiving AZT alone, 

perhaps suggesting greater side effects of AZT+ddC.  The fraction of combination therapy 

patients who report dropping out due to toxic reactions declines substantially for those leaving 

the study in weeks 8 – 44 (column (5)) is much greater than that for dropouts in weeks 56 plus 

(column (6)).  Thus, it appears that patients learn very quickly about the side-effects of 

AZT+ddC.  In contrast, the table shows that subjects receiving AZT are more likely to request to 

leave the trial without a particular reason being reported, particularly in the earlier weeks of the 

trial.  This may reflect the weaker treatment effect of this drug.  Of course, it may be the case 

that a subject with a strong reaction to the treatment may simply not return to the trial physician 

and be classified as lost to follow-up rather than leaving due to toxicity.     

 To provide an initial assessment of the potential impact of attrition on treatment response, 

profiles of the change in log CD4 counts of non-dropouts were compared with those of dropouts. 

 Small cell sizes prevent us from constructing separate profiles for individuals dropping out in 

week 20, 32,...,104.  Instead, subjects were classified into 3 groups: (a) those who did not drop 

out between week 0 and 104 (non-dropouts, 47% of subjects); (b) subjects dropping out between 

weeks 68 and 104 (Year 2 dropouts, 18% of subjects); and (c) subjects that dropped out between 

weeks 8 and 56 (Year 1 dropouts, 35% of subjects).   

The impact of attrition in assessing AIDS progression in the trial is highlighted by 

Figures 3 and 4, which plot the mean change in ln(CD4) counts for the three groups by treatment 

status.  Note that for Year 1 dropouts, CD4 counts are available for all subjects in week 8, but the 

mean value shown in the figure for weeks 20, 32, and 44 only reflect the CD4 counts of subjects 

surviving that long (all Year 1 dropouts have left by week 56).  Similarly, for the Year 2 

dropouts, CD4 counts are available for all subjects prior to week 68.  Comparison of the plots in 
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Figure 3 for the AZT+ddC sub-sample indicates substantial differences in CD4 profiles by 

attrition group.  The change in CD4 counts between week 8 and baseline is higher for non-

dropouts than for those dropping out in Year 1.  By week 44, Year 1 dropouts experience a 20% 

decline in CD4 counts, compared to a 5% decline for Year 2 dropouts and a 3% increase for non-

dropouts.  By week 92, the mean CD4 count for Year 2 dropouts is about 13% below baseline, 

compared with a 3% increase for non-dropouts.   

While all groups in the AZT sub-sample shown in Figure 4 experience greater declines 

than those reported for AZT+ddC patients, the pattern across attrition groups is similar.  For 

example, the decline in CD4 counts for Year 1 dropouts is so rapid that the change in CD4 

counts in week 44 for this group is similar to the change in week 92 for Year 2 dropouts.  These 

plots suggest that attrition is a potentially serious problem for understanding the impact of 

therapies on disease progression.  This is confirmed by the regression estimates presented in 

Column (3) in Table 1.  In this regression, indicator variables for the week of dropout are added 

to specification (2).  Because the week of dropout variables refer to future events, they capture 

the impact of heterogeneity associated with dropout.  Comparison of the estimated coefficients 

on the week dummies in columns (2) and (3) show that the decline in CD4 counts indicated by 

specification (2) is contaminated by attrition bias.  As is clear from Figures 3 and 4, those 

remaining in the sample through week 104 have starkly different CD4 profiles compared to 

individuals dropping out earlier.   

3. MODELLING SUBJECT BEHAVIOR IN ACTG 175 

Trial subjects decide each period whether to remain in the trial or drop out and seek 

alternative treatment.  The decision to remain in the trial depends in part on the subject’s evaluation 

of the direct impact on health status of the treatment received in ACTG 175, denoted by Hit, as well 

as the side effects experienced by the patient when taking the trial medication, Sit.  While Hit is a 
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measured outcome in the trial (e.g., the CD4 count) and is typically the focus of the evaluation of the 

efficacy of alternative treatments by trial investigators, side effects are assumed to be private 

information to the subject.  Variation in the side effects associated with particular treatments 

potentially leads to situations where a treatment may have a strong positive impact on health status, 

but subjects receiving the treatment are much more likely to drop out of the RCT in spite of the 

observed impact on Hit.   

As noted in the introduction, we consider two alternative models of attrition that differ in the 

restrictions imposed on subject behaviour as well as the complexity of econometric implementation. 

 Each of the models is structural in the sense that we specify subject utility functions and separately 

identify direct effectiveness and side effect distributions.  In the learning model, we assume that 

patients maximize current period utility but are not forward-looking.  Subjects also immediately 

observe side effects Sit, although they do not know which arm of the trial they are in.  This 

specification is consistent with the results shown in Table 2, which indicate that combination therapy 

patients quickly discover whether they have a toxic reaction to their treatment.  However, the direct 

effectiveness of the treatment on Hit is not immediately known.  The subject is uncertain about 

treatment effectiveness both because he is blinded to his assigned treatment arm, and because there 

is subject-level variation in the impact of the treatment on health status.  Subject i learns about the 

effectiveness of treatment by observing the sequence {Hit} over the course of the trial.  This 

specification of utility maximization and learning is similar to the pharmaceutical demand model of 

Currie and Park (2000) in which beliefs concerning drug effectiveness are updated via a Bayesian 

learning process.  Dynamic behaviour reflects the learning process as well as unexpected period-

specific shocks and changes in the outside option over the course of the RCT.    

We also consider a forward-looking learning model in which subjects choose to remain in the 

trial for one more period if the discounted stream of expected current and future utilities is greater 
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than the value of the outside option.  The model is similar to that of Crawford and Shum (2000), 

although those authors did not have an observable measure of Hit.  In this case, dynamic behaviour 

reflects expectations regarding future utility as well as learning.   

3.1 THE SUBJECT’S DECISION PROBLEM 

We now describe the forward-looking learning model and note the restrictions that are 

imposed by the simple learning models.  To fix ideas, let t = 0,1,…,τ index the time periods in 

the trial (corresponding to weeks 0, 8, 20,…) and i = 1,…,N denote subjects.  The indicator 

variables dit
k indicate whether the subject remains in the trial (k = T) or chooses the outside 

option and drops out (k = o).  A subject may be in only one state in each period, so that dit
T + dit

o 

= 1.  The objective of the subject is to choose a sequence of actions that maximizes the present 

value of lifetime utility: 
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where Uit
k is the period-specific flow of to the subject from alternative k, Iit is the subject’s 

information set at time t, and β is the discount rate.  We assume that at the end of the trial period, 

all subjects leave the trial and receive the discounted lifetime flow of expected utility from the 

outside option, Vi
o(Iit, τ+1).   

In ACTG 175 subjects are not allowed to re-enter the trial once they drop out, so we 

impose the constraint dit+1
o = 1 if dit

o = 1.  Therefore, at any time t during the trial, the lifetime 

flow of expected utility available to the subject if he leaves the trial is given by  

(2) ( , ) [ [ | ] ( , 1)].o s t o s o
i it is it i it

s t
V I t E E U I V I

τ
τβ β τ− −

=

= + +∑      

Given the subject’s information set at time t, Iit, the expected return of remaining in the 

trial in period t < τ may be written as 
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1 1(3) ( , ) [ | ] [max{ ( , 1), ( , 1)} | ], 0 ,T T T o
i it it it i it i it itV I t E U I E V I t V I t I tβ τ+ += + + + ≤ <  

In the terminal period of the trial, t = τ, the subject receives 

1(4) ( , ) [ | ] [ ( , 1) | ]T T o
i i i i i i iV I E U I E V I Iτ τ τ τ ττ β τ+= + +  

if he remains in the trial, since once the trial is completed we assume that the patient receives the 

outside treatment option.  The maximal lifetime utility of the subject at time t is then given by 

the maximum of the value of remaining in the trial for at least one more period and the value of 

leaving the trial and receiving the outside treatment forever, since subjects cannot re-enter the 

trial once they have dropped out: 

(5) ( , ) max{ ( , ), ( , )}.T o
i it i it i itV I t V I t V I t=  

For a positive discount rate, the decision-making framework outlined in equations (1) – 

(5) implies that subjects may remain in the trial despite low current period utility, perhaps 

resulting from painful side effects, if they expect the future benefits of trial participation to be 

particularly high.  In addition, remaining in the trial for an additional period augments the 

subject’s information set, which also may increase future utility as the patient learns more about 

the effectiveness of the treatment.  Note that both the learning model specification assumes that 

β = 0 so that subjects maximize current period utility only.  

3.2  SPECIFICATION OF PREFERENCES 

Subject i’s per-period utility obtained by participating in ACTG175 is a function of his 

longer term health status in period t as measured by CD4 count, Hit, as well as the shorter term 

side effects (e.g., pain or nausea associated with consumption of treatment drugs) experienced by 

the individual when taking the trial drugs, Sit.  To simplify the analysis, we assume that utility is 

additively separable in Hit and Sit.  In addition, the impact of long term health status on utility is 

allowed to be non-linear.  Currently, we assume that utility is a linear function of side effects, 
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implying that 

(6) ( , ) .T
it it it it itU H S H Sγ= −     

 No information is available from ACTG175 concerning the subject after he drops out of 

the clinical trial.  Consequently, we specify the stream of lifetime utility of subjects dropping out 

of the trial at time t defined in equation (2) to be a linear function of observed characteristics xoit 

as well as a stochastic component:  

(7) ( , ) .o
i it oit iotV I t x δ ε= +  

3.3 SPECIFICATION OF HEALTH STATUS AND SIDE EFFECTS 

Let hit denote the natural logarithm of health status of subject i in period t, ln(Hit).  

Studies in the literature evaluating the impact of alternative treatments on CD4 counts typically 

use a log specification to capture the percentage impact of the treatment (Boscardin et. al. 

(1998)).  Therefore, hit is assumed to be a function of the subject’s (log of) health status at the 

beginning of the trial, hi0; the subject level response to the treatment received in the RCT; a time 

trend; and a period specific error term: 

0(8) ,irt i ri r ith h tθ λ υ− = + +  

where the subscript r = 0, 1 indicates the treatment arm the subject is randomised into.  In 

ACTG175, r = 1 implies the subject receives AZT+ddC, while r = 0 implies receipt of AZT 

alone.  The subject-level random effect in equation (8) is normally distributed and allowed to 

depend on time-invariant subject characteristics 

2~ ( , ).ri i r rN z θθ β σ      

While the ACTG 175 data contain an observable measure of Hit (the subject’s CD4 

count), no direct measures of Sit are available.  Consequently, side effects are specified to be a 

linear function of observed characteristics, including treatment arm, and a period-specific 
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stochastic component: 

2(9) , ~ ( , ).it Si i iSt iS x N αα ε α α σ= +  

Equation (9) incorporates a random coefficient specification to allow the impact of side effects to 

vary across subjects. 

3.4 INCORPORATING SUBJECT LEARNING 

In the models that incorporate learning, subjects decide whether to remain in the trial in 

period t before health status hit is observed, and must form expectations concerning its value.  

Subjects do not observe the idiosyncratic component υit, but they do know its distribution.  In 

addition, subjects are blinded as to which treatment arm they have been assigned.  Consequently, 

from the subject’s point of view at time t  

2
0(10) ~ ( , )it i ih N h υµ σ+ , 

where µi is the unknown individual specific impact on health status of remaining in the trial.  We 

assume that at trial baseline, subjects have common prior beliefs concerning µi: 

   2
0 0(11) ~ ( , ).i N µµ µ σ  

The prior variance σµ
2 reflects the precision of the prior beliefs of the subjects in the trial.  The 

prior parameters µ0 and σµ0
2 are estimated as part of the econometric model.      

 While all trial participants have the same prior mean and variance at baseline, upon the 

commencement of the trial the subject observes a sequence of health status measures hit , which 

is used to update the subject’s prior beliefs according to the Bayesian rule (DeGroot (1970)).  

The posterior mean and variance of µi in period t is given by     
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 Similar expressions may be constructed to describe the learning process for side effects.  

However, in the current version of the paper we assume that side effects are learned immediately 

upon initiation of the trial by the patient.  As a result, the idiosyncratic factors influencing side 

effects at time t, εiSt are observed by the subject (but not by the econometrician) when the 

dropout decision is made.  This may be a reasonable assumption, given that many side effects 

reflect short-term discomfort associated with consumption of the treatment.  Such features of the 

trial treatment seem likely to be immediately observed.  

 Given the utility specification in equation (7) and the assumptions regarding subject 

learning described above, and noting that Hit
γ = exp(γ*hit), the expected current period t utility of 

remaining in the trial given the patient’s information set Iit may be written as 

2
2 2

0 ,(13) [ ( , ) | ] exp( *( ) ( )) ,
2

T t
it it it it i i t Si i iStE U H S I h xυ µ

γγ µ σ σ α ε= + + + − −  

since hit is a normal random variable.  Equation (13) may then be substituted into equations (3) 

and (4) to obtain the expected return to remaining in the RCT for at least one more period. 

4.   ECONOMETRIC IMPLEMENTATION 

 This section presents the econometric method used to estimate the economic model 

described in Section 3.  The estimation procedure is complicated by the fact that dropout 

decision is correlated over time, as are the observed health status measures {Hit}.  Therefore, our 

econometric approach relies on simulation-based methods and proceeds in two steps.  To begin, 

consider a subject who drops out in period t.  The likelihood contribution of this subject is then 
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the joint probability of observing the sequence of (log) health outcomes hi1, hi2,…,hit-1 and 

dropout in period t and is given by 

1 1 1 1 1 2(14) Pr( ,..., , 1,..., 1, 0 | , , , ),T T T
i i it i it it i iL h h d d d x z− −= = = = Θ Θ  

where the parameters from the dropout decision and health status equations are denoted by Θ1 = 

{β, γ, δ, α, σα,µ0,σµ} and Θ2 = {βr, σβr, λr, συ}, respectively, and xi = {xSi, xoit}.  Equation (14) 

can be rewritten as 

1 1 1 1 1 2

1 1 1 2

(15) ( ,..., | 1,..., 1, 0, , , , )

*Pr( 1,..., 1, 0 | , , , ).

T T T
i i it i it it i i

T T T
i it it i i

L f h h d d d x z

d d d x z
− −

−

= = = = Θ Θ

= = = Θ Θ
 

  Using equations (3), (4), and (7), this is equivalent to 

1 1 1 1 1 1 1 2

1 1 1 1 1 2

(16) ( ,..., | ,..., , , , , , )

*Pr( ,..., , | , , , ).

T o T o T o
i i it i i it it it it i i

T o T o T o
i i it it it it i i

L f h h V V V V V V x z

V V V V V V x z
− − −

− −

= > > < Θ Θ

> > < Θ Θ
 

The form of Vit
T will depend on the model that is being estimated, and increases in 

complexity as we go from the base to the learning to the forward-looking learning model.  In 

addition, both xSi and xoit and εSit and εoit enter linearly into Vit
T - Vit

o in equation (16), so that 

only contrasts between the two are identified.  We assume that Var(εSit - εoit ) = 1 because the 

scale of the difference in values is not observed.     

Directly maximizing (16) is difficult because the sequence of subject-period observations 

is not independent for individual i.  Consequently, we adopt a two-step simulation approach that 

first estimates the choice probabilities given by the second term on the right-hand side of 

equation (16).  Given a consistent estimate of the choice parameters Θ1, the second step then 

estimates the health status equation accounting for dropout.   

 Estimation of dropout probabilities in the first step begins by noting that hit is a function 

of Θ2 and zi.  Consequently, the observed sequence of health status variables hit is generated from 
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the true value of Θ2.  We can obtain estimates of the parameters of the dropout equation, Θ1, 

conditioning on the observed values of his, by maximizing the log of 

 1
1 1 1 1 1(17) Pr( ,..., , | ,{ }, )T o T o T o

i i i it it it it is iL V V V V V V h x− −= > > < Θ     

using the GHK simulator because dropout is not independent across periods. 

 Given the estimated parameters Θ1 from the first step, we now turn to the estimation of 

the density of {hit} in the second step.  The joint density of the observed health status measures, 

conditional upon dropout in period t, is given by 

2
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In order to recover estimates of Θ2, we first substitute the estimated value of Θ1 obtained from 

the first-step dropout equation into equation (18).  We then estimate the log of equation (18) over 

all subjects to obtain the parameter estimates of the health status equation, using the GHK 

simulator to evaluate the joint probabilities. 

5. RESULTS 

We fit the two alternative models to the ACTG 175 data using the simulation methods 

described above.  Health status at time t, Hit, is measured by the subject’s CD4 count.  The literature 

on ACTG 175, such as Hammer et al (1996), suggests that the following variables might be expected 

to affect the subject-level treatment impact on hit, and hence are included in zi: (1) demographic 

variables such as age, gender, and race; (2) variables measuring the extent of disease at baseline, 

such as whether the subject has a symptomatic HIV infection (which suggests a greater spread of the 

disease) and whether the subject had been exposed to prior antiretroviral therapy (which again may 

suggest a greater spread of disease).     

A key feature of the empirical analysis is the specification of the factors that influence the 
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outside option available to trial participants at time t.  Perhaps the most important factor is the set of 

AIDS treatments that become available over the course of the trial.  While we do not observe such 

treatments directly, we assume that their availability is correlated with calendar time.  The vector xiot 

thus contains a variable indicating the current calendar year of the trial, as well as an indicator of 

whether the subject is an IV drug user, since these individuals are likely to be less stable and follow 

up in the trial (the other categories are haemophiliac and homosexual).  It may be the case that 

subjects with more financial resources are more able to search and afford non-ACTG 175 treatments. 

 While income is not reported, subject age, gender, and race may be correlated with the financial 

resources of the patient, and so we include these variables as proxies.  Finally, we include the week 

number of the trial in xiot because as the trial proceeds, subjects may be less likely to search for 

outside treatment options.   

Side effects are a specified to be a function of treatment assignment (AZT+ddC vs. AZT), 

and as shown in equation (9) the impact of the side effects is assumed to be subject-specific.  In 

addition, we allow the side effects associated with each treatment to differ depending on whether the 

subject has received antiretroviral therapy prior to ACTG 175 and whether the individual has a 

symptomatic HIV infection.  We now turn to the discussion of the parameter estimates from the 

learning and forward-looking learning models, and then follow with a discussion of the treatment 

effects obtained from the models.      

5.1 RESULTS FOR THE LEARNING MODEL 

The parameter estimates from the learning model are presented in Table 3.  The first column 

of the table presents coefficient estimates for the parameters that affect the decision to remain in 

ACTG 175 or drop out and seek alternative treatment.  Aside from the side effects associated with 

the two treatments described below, the estimates from the dropout equation exhibit some notable 

findings.  The positive estimate of γ implies that subjects with higher expected CD4 counts are more 
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likely to remain in the trial.  In the absence of side effects, and with perfect information concerning 

the impact of treatment on CD4 counts, this would imply that subjects receiving combination 

therapy should be more likely to remain in the RCT than those receiving AZT.  Moreover, declining 

CD4 counts over the course of the trial appear to drive attrition behaviour, since the positive 

coefficient on the week number of the trial suggests that individuals are more likely to remain the 

longer they have been in ACTG 175.   

With regard to the coefficient estimates for the outside option parameters, intravenous drug 

users are much more likely to drop out of the trial in each treatment arm.  If these individuals are to 

be studied further, incentives must be provided in order to induce them to remain in the trial.  AIDS 

treatments available outside ACTG 175 appear to become increasingly attractive over time, since 

subjects who enrolled later in the trial are more likely to drop out.  Finally, older individuals tend to 

be less likely to drop out of the trial, perhaps because they are more settled.    

Another notable result in Table 3 concerns the estimates of the subjects’ prior mean and 

variance of the effectiveness of trial treatment, µ0 and σµ0.  The positive and significant estimate of 

µ0 in column (1) shows that the average subject appears to be optimistic about treatment 

effectiveness at the initiation of the trial.  Moreover, the estimate of σµ0 suggests that most subjects 

expect that participation in the trial will have a positive impact on their health status.  In order to 

assess the speed with which expected beliefs concerning the impact of the trial drugs on CD4 counts 

converge to the actual values, the expected ln(CD4) count in period in period, equal to hi0  + µi
t, was 

constructed for representative subjects receiving combination therapy and AZT, respectively, 

assuming that each has a baseline CD4 count of 350.   

Figure 5 shows that the expected ln(CD4) counts of both subjects in week 8 are equal and 

overstate the actual CD4 count, particularly for the AZT patient.  This result is probably not 
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surprising, given that individuals choosing to enrol in the trial will likely have relatively optimistic 

expectations of effectiveness.  The observed difference in CD4 counts in week 8 should therefore 

have little impact on the difference in dropout behaviour across treatment arms.  As the subjects 

accumulate information on their CD4 counts over the course of the trial, their beliefs converge on 

the actual values, implying that the greater effectiveness of AZT+ddC eventually leads to reduced 

dropout compared to those receiving AZT alone.  In addition, to the extent that subjects are initially 

over-optimistic about the likelihood of success, dropout will be relatively low during the early 

periods of the trial as subjects accumulate information concerning the effectiveness of treatment. 

The posterior variance described in equation (12), σµ,t
2, describes the degree of uncertainty 

regarding treatment effectiveness perceived by trial subjects.  The relatively small value of συ
2 

shown in Table 3 suggests that the signals received by patients are relatively precise.  Figure 6 

describes the evolution of σµ,t
2 over the course of the trial.  The figure suggests that while subjects 

initially experience substantial uncertainty regarding effectiveness, by week 44 of the trial the 

posterior variance is roughly one-fifth the prior variance.  By the end of the second year of the trial, 

σµ,t
2 has dropped to approximately 0.02.  Overall, Figures 5 and 6 suggest that while subjects are 

initially optimistic yet uncertain regarding the impact of the trial on health status, expected 

effectiveness converges on its observed value over the course of the trial, and patient uncertainty 

declines substantially.                    

5.2 RESULTS FOR THE FORWARD-LOOKING LEARNING MODEL 

 Not yet completed 

5.3 TREATMENT EFFECTS 

 In this section we examine two sets of treatment effects, the first relating to the impact of 

AZT+ddC vs. AZT alone on health status, the second involving the impact of the alternative trial 
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treatments on side effects.  Turning first to the impact of combination vs. monotherapy on CD4 

counts, column (2) of Table 3 presents the estimates for the outcome equation (8).  The results 

indicate that the average subject (who is not symptomatic nor has prior anti-retroviral therapy) 

receiving combination therapy experiences approximately a 5.4% increase in CD4 count in the first 

period (week 8) of the trial, compared with a 3.3% decline for those individuals receiving AZT 

alone.  If all subjects were to remain in the trial for the full two years, the model estimates predicts 

that the treatment effect grows from 8.7% in week 8 to 31.9% by week 104.  However, treatment 

effectiveness of combination therapy appears to be more uncertain than that of AZT alone, given the 

larger subject-level standard deviation associated with AZT+ddC.  Demographic variables and 

symptomatic status appear to have little impact on CD4 counts, although individuals who received 

anti-retroviral therapy prior to ACTG 175 have lower CD4 counts regardless of trial arm.  Finally, 

examination of columns (2) and (3) of Table 2 indicate that estimates of the CD4 equation obtained 

from the learning model tend to be similar to those obtained from a simple OLS regression, with the 

exception that CD4 counts among AZT patients are predicted to have a sharper decline when using 

the learning model.    

To compare the impact of the alternative treatments on CD4 counts obtained from our model 

with those recovered from the raw data, we replaced the missing ln(CD4) counts of subjects who 

dropped out of the trial with values generated from the model in Table 3.  Figure 7 presents the 

change in ln(CD4) count profiles after substituting for the missing values, along with the unadjusted 

profiles from Figure 1.  Accounting for attrition has only a minor effect on patients receiving 

AZT+ddC.  Despite the fact that half of these patients left by the end of the trial, the mean adjusted 

and unadjusted outcomes in week 104 are virtually identical.  On the other hand, the plots for AZT 

patients show a marked difference between the adjusted and unadjusted profiles, suggesting that the 

unadjusted profile understates the disease progression for this group. 
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While the results indicate that combination therapy has a significant impact on CD4 counts, 

the picture appears to be quite different with regard to side effects.  In this case, the results from 

column (1) of Table 3 suggest that patients receiving AZT+ddC are substantially more likely to drop 

out of the trial, after accounting for expected impact on CD4 counts, than are the AZT subjects, 

suggesting that side effects are greater for combination therapy.  The box plots of the subject-level 

side effect distributions for combination therapy vs. monotherapy patients shown in Figure 8 

confirm that most AZT patients are less likely to drop out of ACTG 175, all else equal, than the 

average AZT+ddC subject.  One interpretation of our findings that is consistent with the difference 

in the treatment specific survivor functions plotted in Figure 2 is that AZT+ddC subjects are initially 

more likely to drop out of ACTG 175 due to the immediately perceived higher side effects 

associated with combination therapy.  Over time, the fact that AZT subjects experience greater 

declines their CD4 counts offsets the lower side effects associated with the treatment, leading to 

increased attrition.    

We have interpreted the difference in dropout probabilities across the treatment arms of 

ACTG 175 as reflecting the difference in side effects, conditional on expected CD4 count.  Because 

side effects are not observed directly, one might argue that the results reflect differences in the 

outside treatment options available to subjects in the two groups.  However, randomization implies 

that the average outside option will not differ across the two groups at baseline due to unobserved 

characteristics.       

6. CONCLUSION 

This paper assesses the impact of HIV combination therapy versus monotherapy for AIDS 

using data from the AIDS randomised clinical trial ACTG 175.  We adopt a structural econometric 

framework that views subjects as utility maximizing agents who decide each period whether to drop 

out or remain in ACTG 175.  Subject utility is specified to be a function of both long-term health 
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status, as measured by CD4 counts, and side effects.  We consider models in which subjects learn 

over time about the impact of trial participation on CD4 counts, as well as allowing for forward-

looking behaviour.  The approach taken in this paper recovers treatment effect estimates for both 

CD4 counts and side effects.  The framework also explicitly accounts for heterogeneous response to 

the treatment at the subject level in order to account for the possibility that patient sub-groups vary 

in responsiveness to treatment. 

An examination of the ACTG 175 data indicates that subjects who leave the trial experience 

large declines in their CD4 counts prior to exit, particularly for those receiving AZT alone.  

Surprisingly, despite the fact that AZT+ddC appears to have a bigger impact on health status from 

the onset of the trial, combination therapy patients are initially slightly more likely to drop out.  

Eventually, however, attrition among AZT patients surpasses that of the AZT+ddC group.  The 

(preliminary) estimates from the learning model indicate that AZT+ddC has greater side effects than 

AZT alone, implying higher attrition.  Subjects appear to have optimistic prior beliefs concerning the 

effectiveness of trial treatment, so that initial differences in CD4 counts across treatments will have 

less impact on dropout.  However, given that the estimated treatment effect of AZT+ddC increases 

from approximately 9% to 32% by the end of the trial, attrition among monotherapy patients 

overtakes that of combination therapy subjects due to the magnitude of the treatment effect on CD4 

counts.   

An important limitation of the models and estimates reported in this paper is the lack of 

information on the outside option available to subjects.  Calendar time has a significant impact on 

the dropout decision, suggesting that alternative therapies become more attractive over the course of 

the trial period.  The results are conditional upon the decision of subjects to participate in ACTG 

175, and cannot be generalized to non-participants since their outside option (or beliefs about the 

effectiveness of trial treatment) is likely to differ from those of trial patients.  If data on non-
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participants could be obtained, the decision to enrol in the trial could be incorporated into the 

framework, and perhaps the findings of treatment effectiveness could be generalized to the HIV 

population (with CD4 counts between 200 and 500) as a whole.    
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TABLE 1 

OLS ESTIMATES OF THE IMPACT OF AZT+ddC ON CD4 COUNTS 
Dependent Variable is Change in ln(CD4) Count Relative to Baseline 

Specification Variables 
(1) (2) (3) 

AZT+ddC, Week 8 0.100 
(0.019) 

0.101 
(0.019) 

0.089 
(0.018) 

AZT+ddC, Week 20 0.126 
(0.020) 

0.130 
(0.020) 

0.115 
(0.020) 

AZT+ddC, Week 32 0.127 
(0.021) 

0.130 
(0.021) 

0.116 
(0.021) 

AZT+ddC, Week 44 0.140 
(0.022) 

0.143 
(0.022) 

0.129 
(0.021) 

AZT+ddC, Week 56 0.152 
(0.023) 

0.157 
(0.023) 

0.144 
(0.022) 

AZT+ddC, Week 68 0.166 
(0.024) 

0.170 
(0.024) 

0.159 
(0.024) 

AZT+ddC, Week 80 0.217 
(0.026) 

0.222 
(0.025) 

0.216 
(0.025) 

AZT+ddC, Week 92 0.177 
(0.027) 

0.179 
(0.026) 

0.178 
(0.026) 

AZT+ddC, Week 104 0.191 
(0.028) 

0.192 
(0.027) 

0.191 
(0.026) 

Week 8 -0.032 
(0.020) 

-0.029 
(0.020) 

-0.026 
(0.020) 

Week 20 -0.070 
(0.021) 

-0.067 
(0.020) 

-0.067 
(0.021) 

Week 32 -0.114 
(0.021) 

-0.112 
(0.021) 

-0.120 
(0.021) 

Week 44 -0.138 
(0.022) 

-0.137 
(0.021) 

-0.157 
(0.022) 

Week 56 -0.140 
(0.022) 

-0.142 
(0.022) 

-0.173 
(0.022) 

Week 68 -0.148 
(0.023) 

-0.150 
(0.023) 

-0.192 
(0.023) 

Week 80 -0.174 
(0.024) 

-0.177 
(0.023) 

-0.232 
(0.024) 

Week 92 -0.156 
(0.025) 

-0.159 
(0.024) 

-0.225 
(0.025) 

Week 104 -0.158 
(0.025) 

-0.160 
(0.025) 

-0.235 
(0.025) 

Includes Covariate Controls? No Yes Yes 
Includes Indicators for Week of 
Dropout? 

No No Yes 

Notes:  Standard errors in parentheses.  Based on 7063 subject-week observations.  Covariate controls include age, 
gender, race, symptomatic HIV infection, screening CD4 count, and prior antiretroviral therapy. 
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TABLE 2 

REPORTED REASON FOR DROPOUT, CONDITIONAL UPON ATTRITION 
AZT+ddC AZT Reason 

Overall 
 

(1) 

Dropout in 
Weeks 8-44

(2) 

Dropout in 
Weeks 56+ 

(3) 

Overall 
 

(4) 

Dropout in 
Weeks 8-44 

(5) 

Dropout in 
Weeks 56+ 

(6) 
Death 0.02 0.01 0.04 0.04 0.04 0.03 

Toxicity of 
Treatment, 

Patient Request 

 
0.27 

 
0.34 

 
0.13 

 
0.19 

 
0.22 

 
0.16 

Request of 
Patient 

0.26 0.23 0.31 0.33 0.32 0.34 

Request of 
Investigator 

0.03 0.04 0.02 0.02 0.03 0.01 

Lost to Follow-
Up 

0.15 0.16 0.13 0.12 0.13 0.10 

Other 0.27 0.22 0.37 0.30 0.26 0.36 
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TABLE 3 

PARAMETER ESTIMATES FOR THE LEARNING MODEL 
Variables Dropout Equation 

(1) 
ln(CD4it) – ln(CD4i0) 

(2) 
OLS Estimates 

(3) 
γ 0.203  

(0.030) 
  

AZT (mean) -0.323  
(0.159) 

-0.005  
(0.001) 

0.030  
(0.041) 

AZT+ddC (mean) -0.696  
(0.154) 

0.053  
(0.0008) 

0.114  
(0.038) 

AZT (s.d.) 0.211  
(0.069) 

0.078  
(0.031) 

 

AZT+ddC (s.d.) 0.168  
(0.055) 

0.129  
(0.052) 

 

AZT*t  -0.028  
(0.002) 

-0.023  
(0.002) 

AZT+ddC*t  0.001  
(0.0014) 

-0.004  
(0.004) 

Prior Antiretroviral 
*AZT 

0.147  
(0.017) 

-0.077  
(0.022) 

-0.099  
(0.047) 

Prior Antiretroviral 
*AZT+ddC 

0.114  
(0.014) 

-0.129  
(0.018) 

-0.116  
(0.039) 

Symptomatic*AZT -0.109  
(0.023) 

-0.056  
(0.182) 

-0.030 
(0.116) 

Symptomatic 
*AZT+ddC 

-0.146  
(0.017) 

0.011  
(0.087) 

-0.019 
(0.212) 

Age 0.016  
(0.001) 

-0.0001  
(0.007) 

0.0003 
(0.044) 

Male -0.179  
(0.028) 

0.022  
(0.086) 

0.0009 
(0.062) 

White 0.054  
(0.020) 

0.002  
(0.017) 

-0.009 
(0.013) 

IV Drug User -0.545  
(0.290) 

  

Homosexual 0.096  
(0.026) 

  

t 0.399  
(0.024) 

  

Calendar Year -0.387  
(0.019) 

  

µ0 0.476  
(0.144) 

  

σµ0 0.243  
(0.045) 

  

συ  0.131 
(0.002) 

 

Note:  Standard errors in parentheses.  Estimates based on 536 subjects receiving AZT and 536 subjects receiving 
AZT+ddC. 
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FIGURE 1   
CD4 COUNT PROFILES, BY TREATMENT GROUP  
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FIGURE 2 

SURVIVOR FUNCTIONS, BY TREATMENT GROUP 
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FIGURE 3 
CD4 COUNT PROFILES FOR AZT+ddC SUBJECTS, BY ATTRITION GROUP 
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FIGURE 4 
CD4 COUNT PROFILES FOR AZT SUBJECTS, BY ATTRITION GROUP 
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FIGURE 5 
ln(CD4) COUNT PROFILES, ACTUAL AND EXPECTED,  

BY TREATMENT GROUP 
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FIGURE 6 
EVOLUTION OF POSTERIOR VARIANCE 
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FIGURE 7 
CD4 COUNT PROFILES, ADJUSTED FOR ATTRITION, BY TREATMENT GROUP 
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FIGURE 8 
DISTRIBUTION OF SUBJECT SIDE EFFECTS, BY TREATMENT GROUP 
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APPENDIX TABLE 1 
SUMMARY STATISTICS BY TREATMENT STATUS 

Variable AZT  AZT+ddC 
Age at Baseline 34.54 (8.75) 34.78 (8.65) 
Male 0.80 (0.40) 0.84 (0.37) 
White 0.70 (0.46) 0.69 (0.46) 
Symptomatic HIV Infection 0.17 (0.38) 0.18 (0.38) 
Screening CD4 Count 348.97 (83.78) 350.04 (82.34) 
Prior Antiretroviral Therapy 0.55 (0.50) 0.55 (0.50) 
IV Drug User at Baseline 0.12 (0.33) 0.14 (0.35) 
Homosexual at Baseline 0.62 (0.49) 0.67 (0.47) 
Number of Observations 536 536 
Number of Sites 89 87 
Note:  Standard deviation in parentheses. 
 
 
 
  


